A Multifunctional Joint Angle Sensor with Measurement Adaptability
نویسندگان
چکیده
The paper presents a multifunctional joint sensor with measurement adaptability for biological engineering applications, such as gait analysis, gesture recognition, etc. The adaptability is embodied in both static and dynamic environment measurements, both of body pose and in motion capture. Its multifunctional capabilities lay in its ability of simultaneous measurement of multiple degrees of freedom (MDOF) with a single sensor to reduce system complexity. The basic working mode enables 2DOF spatial angle measurement over big ranges and stands out for its applications on different joints of different individuals without recalibration. The optional advanced working mode enables an additional DOF measurement for various applications. By employing corrugated tube as the main body, the sensor is also characterized as flexible and wearable with less restraints. MDOF variations are converted to linear displacements of the sensing elements. The simple reconstruction algorithm and small outputs volume are capable of providing real-time angles and long-term monitoring. The performance assessment of the built prototype is promising enough to indicate the feasibility of the sensor.
منابع مشابه
Improvement of position measurement for 6R robot using magnetic encoder AS5045
Recording the variation of joint angles as a feedback to the control unit is frequent in articulated arms. In this paper, magnetic sensor AS5045, which is a contactless encoder, is employed to measure joint angles of 6R robot and the performance of that is examined. The sensor has a low volume, two digital outputs and provides a high resolution measurement for users; furthermore its zero positi...
متن کاملAccuracy of a Custom Physical Activity and Knee Angle Measurement Sensor System for Patients with Neuromuscular Disorders and Gait Abnormalities
Long-term assessment of ambulatory behavior and joint motion are valuable tools for the evaluation of therapy effectiveness in patients with neuromuscular disorders and gait abnormalities. Even though there are several tools available to quantify ambulatory behavior in a home environment, reliable measurement of joint motion is still limited to laboratory tests. The aim of this study was to dev...
متن کاملImproving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations
Bending sensors enable compact, wearable designs when used for measuring hand configurations in data gloves. While existing data gloves can accurately measure angular displacement of the finger and distal thumb joints, accurate measurement of thumb carpometacarpal (CMC) joint movements remains challenging due to crosstalk between the multi-sensor outputs required to measure the degrees of freed...
متن کاملIMU-Based Joint Angle Measurement for Gait Analysis
This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods tha...
متن کاملA Preliminary Test of Measurement of Joint Angles and Stride Length with Wireless Inertial Sensors for Wearable Gait Evaluation System
The purpose of this study is to develop wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on. In this paper, simultaneous measurement of joint angles of lower limbs and stride length was tested with a prototype of wearable sensor system. The system measured the joint angles using the Kalman filter. Signals from th...
متن کامل